A stochastic min-driven coalescence process and its hydrodynamical limit
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact ai10.
Note that this seminar, although at INI, is part of the ACA seminar series. Also, note the new title.
A stochastic system of particles is considered in which the
sizes of the particles increase by successive binary mergers with the
constraint that each coagulation event involves a particle with minimal
size. Convergence of a suitably renormalised version of this process to
a deterministic hydrodynamical limit is shown and the time evolution of
the minimal size is studied for both deterministic and stochastic
models. (joint work with Anne-Laure Basdevant (Paris X), James R. Norris (Cambridge), Clément Rau (Toulouse)).
This talk is part of the Applied and Computational Analysis series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|