University of Cambridge > > DAMTP Friday GR Seminar > Neutron stars as gravity laboratories

Neutron stars as gravity laboratories

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Michalis Agathos.

Compact objects in general and neutron stars (NSs) in particular open a window to some of the most extreme physics we can find in nature. On the one hand in the interior of NSs we can find matter in very extreme densities, exceeding nuclear densities and anything we can probe in the laboratory, while on the other hand NSs are related to the strongest gravitational fields next only to those found in black holes. Therefore studying NSs gives us access to both supranuclear densities as well as strong gravity and can be used to get information and test our theories of matter (equation of state) and gravity. The relevant properties of the structure of NSs are encoded on the spacetime around them and by studying the astrophysical processes that take place around NSs we can map that spacetime and extract these properties (i.e., the multipole moments, the equation of state, etc). In this talk we will discuss these properties of NSs and how they are related to the properties of the spacetime around them both in GR and in one of the proposed alternative theories of gravity. We will also talk about the relation of these properties to astrophysical observables and how one could tell these theories apart.

This talk is part of the DAMTP Friday GR Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity