University of Cambridge > > DAMTP Friday GR Seminar >  Core collapse in massive ST theory: phenomenology and observational potential

Core collapse in massive ST theory: phenomenology and observational potential

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Isobel Romero-Shaw.

Though General Relativity has been successfully tested so far, concepts such as dark energy and string theory suggest the need of modifying it. Scalar-tensor theory is one of the most popular alternatives discussed. We produce studies of stellar core collapse in spherical symmetry in which we systematically explore the parameter space that characterizes the progenitor stars, the equation of state and the scalar-tensor theory of the core collapse events. We identify a remarkably simple and straightforward classification scheme of the resulting collapse events. For any given set of parameters, the collapse leads to one of three end states, a weakly scalarized neutron star, a strongly scalarized neutron star or a black hole, possibly formed in multiple stages. The latter two end states can lead to strong gravitational-wave signals that may be detectable in present continuous-wave searches with ground-based detectors. The dispersive nature of the propagation of waves in the massive scalar field mean the GW signals are long lived and many such signals can overlap to form a stochastic background. Using different models for the population of supernova events in the nearby universe, we compute predictions for the energy-density in the stochastic scalar-polarized GW background from core-collapse events in massive ST gravity for theory parameters that facilitate strong scalarization.

This talk is part of the DAMTP Friday GR Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity