COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Differential Geometry and Topology Seminar > The Calderon problem for connections
The Calderon problem for connectionsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Ivan Smith. We will consider the problem of identifying a unitary connection \nabla on a vector bundle, up to gauge equivalence, from the Dirichlet-to-Neumann map of the connection Laplacian \nabla^*\nabla. One possible approach is through the construction of special Complex Geometric Optics solutions and a further reduction of the problem to an X-ray transform. We will also consider another approach in the Yang-Mills connections setting, based on picking a special gauge in which the Yang-Mills equations become elliptic and using a unique continuation principle for elliptic systems for identification near the boundary. This talk is part of the Differential Geometry and Topology Seminar series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsMordell Lectures Evolutionary Genetics Journal Club Gut feeling: how bacteria influence our wellbeing NLIP Seminar Series Mathworks BTRU Seminar SeriesOther talksUnderstanding Ellipsis: Corpus, Annotation, Theory Saving our bumblebees Quantifying Uncertainty in Turbulent Flow Predictions based on RANS/LES Closures Poland, Europe, Freedom: A Personal Reflection on the Last 40 Years |