COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Statistics > Tail index estimation, concentration, adaptation...
Tail index estimation, concentration, adaptation...Add to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Quentin Berthet. This paper presents an adaptive version of the Hill estimator based on Lespki’s model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand’s concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata’s representation of slowly varying functions, and Rényi’s characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations. This talk is part of the Statistics series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge University Heraldic and Genealogical Society Developmental Biology Seminar Series The Annual CCHSR Lecture 2016 All Faculty of Education Seminars King's Occasional Lectures EvolutionOther talksLight Scattering techniques Microsporidia: diverse, opportunistic and pervasive pathogens Feeding your genes: The impact of nitrogen availability on gene and genome sequence evolution Propagation of Very Low Frequency Emissions from Lightning Tying Knots in Wavefunctions |