University of Cambridge > Talks.cam > Statistics > Nonparametric regression for locally stationary time series

Nonparametric regression for locally stationary time series

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Richard Samworth.

We study nonparametric models allowing for locally stationary regressors and a regression function that changes smoothly over time. These models are a natural extension of time series models with time-varying coefficients. We introduce a kernel-based method to estimate the time-varying regression function and provide asymptotic theory for our estimates. Moreover, we show that the main conditions of the theory are satisfied for a large class of nonlinear autoregressive processes with a time-varying regression function. Finally, we examine structured models where the regression function splits up into time-varying additive components. As will be seen, estimation in these models does not suffer from the curse of dimensionality.

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity