Twodimensional algebra and origami
Add to your list(s)
Download to your calendar using vCal
 James Griffin, DPMMS
 Friday 05 November 2010, 14:0015:00
 MR4.
If you have a question about this talk, please contact Chris Bowman.
Given a finite set of elements in a group or a ring, an ordering of the elements must be chosen before they can be lined up and composed. I will discuss the kind of algebra where compositions are instead indexed by an ntuple of distinct points in the plane. I will give examples, some of which may be familiar (although you might not have guessed it). My final example comes from a modern approach to the ancient art of origami.
This talk is part of the Junior Algebra and Number Theory seminar series.
This talk is included in these lists:
Note that exdirectory lists are not shown.
