University of Cambridge > > Fluid Mechanics (DAMTP) > Topological Origin of Certain Fluid and Plasma Waves

Topological Origin of Certain Fluid and Plasma Waves

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr. Jerome Neufeld.

Symmetries and topology play central roles in our understanding of physical systems. Topology, for instance, explains the precise quantization of the Hall effect and the protection of surface states in topological insulators against scattering from disorder or bumps. However discrete symmetries and topology have so far played little role in thinking about the fluid dynamics of oceans and atmospheres. In this talk I show that, as a consequence of the rotation of the Earth that breaks time reversal symmetry, equatorially trapped Kelvin and Yanai waves emerge as topologically protected edge modes. The non-trivial structure of the bulk Poincaré waves encoded through the first Chern number of value 2 guarantees the existence of these waves. Thus the oceans and atmosphere of Earth naturally share basic physics with topological insulators. As equatorially trapped Kelvin waves in the Pacific ocean are an important component of El Niño Southern Oscillation and other climate oscillations, these new results demonstrate that topology plays a surprising role in Earth’s climate system. We also predict that waves of topological origin will arise in magnetized plasmas. A planned experiment at UCLA ’s Basic Plasma Science Facility to look for the waves is described.

webinar link:

This talk is part of the Fluid Mechanics (DAMTP) series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2021, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity