COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > DAMTP Friday GR Seminar > Challenges in Gravitational-Wave Modelling of Extreme-Mass-Ratio Inspirals
Challenges in Gravitational-Wave Modelling of Extreme-Mass-Ratio InspiralsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Dr Joan Camps. Extreme-Mass-Ratio Inspirals (EMRIs) are astrophysical systems which are composed of a massive black hole (order 10E6 Msun) and a compact star CS (order 5Msun). Due to the nature of the system, the compact star (CS) can complete many orbits deep inside the massive black hole (MBH) potential whilst radiating GWs that carry imprinted the structure of the MBH spacetime. Therefore, EMRI detection offers a unique way to obtain direct information about the strong field near the MBH horizon. However, for EMRI detection, its orbit needs to be modelled very accurately, which in practice means solving the two body problem in General Relativity. To accurately model the CS motion, we rely on perturbation theory, where the inspiral is driven by the action of a local self-force. The computation of the self-force is still an open problem due to its mathematical and technical complexity. Moreover, along its evolution an EMRI might encounter resonant orbits, adding further difficulty to the modelling. In this talk I will review these two problems in EMRI modelling and the research that we are developing to address them. This talk is part of the DAMTP Friday GR Seminar series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsMathworks Centre for Gender Studies-Public Events Liberia's Independence Day Talk Dambusters: the engineering behind the bouncing bomb All Cavendish Laboratory Seminars The Ellen McArthur Lectures 2013Other talks'Walking through Language – Building Memory Palaces in Virtual Reality' Uncertainty Quantification with Multi-Level and Multi-Index methods The interpretation of black hole solutions in general relativity Fluorescence spectroscopy and Microscale thermophoresis Tracking neurobiological factors of language developmental difficulties Autumn Cactus & Succulent Show XZ: X-ray spectroscopic redshifts of obscured AGN Knot Floer homology and algebraic methods Reading and Panel Discussion with Emilia Smechowski |