University of Cambridge > Talks.cam > Statistics > Approximate Cross Validation for Large Data and High Dimensions

Approximate Cross Validation for Large Data and High Dimensions

Add to your list(s) Download to your calendar using vCal

  • UserTamara Broderick, Massachusetts Institute of Technology
  • ClockFriday 17 January 2020, 14:00-15:00
  • HouseMR12.

If you have a question about this talk, please contact Dr Sergio Bacallado.

The error or variability of statistical and machine learning algorithms is often assessed by repeatedly re-fitting a model with different weighted versions of the observed data. The ubiquitous tools of cross-validation (CV) and the bootstrap are examples of this technique. These methods are powerful in large part due to their model agnosticism but can be slow to run on modern, large data sets due to the need to repeatedly re-fit the model. We use a linear approximation to the dependence of the fitting procedure on the weights, producing results that can be faster than repeated re-fitting by orders of magnitude. This linear approximation is sometimes known as the “infinitesimal jackknife” (IJ) in the statistics literature, where it has mostly been used as a theoretical tool to prove asymptotic results. We provide explicit finite-sample error bounds for the infinitesimal jackknife in terms of a small number of simple, verifiable assumptions. Without further modification, though, we note that the IJ deteriorates in accuracy in high dimensions and incurs a running time roughly cubic in dimension. We additionally show, then, how dimensionality reduction can be used to successfully run the IJ in high dimensions in the case of leave-one-out cross validation (LOOCV). Specifically, we consider L1 regularization for generalized linear models. We prove that, under mild conditions, the resulting LOOCV approximation exhibits computation time and accuracy that depend on the recovered support size rather than the full dimension D. Simulated and real-data experiments support our theory.

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity