COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > HEP phenomenology joint Cavendish-DAMTP seminar > Transverse momentum resummation: general formalism and the case of diphoton production at LHC
Transverse momentum resummation: general formalism and the case of diphoton production at LHCAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Marco Nardecchia. After reviewing the b-space transverse momentum (qT) resummation formalism in the context of hadron collisions, focusing on the simplest case in which a colorless final state is produced alongside unresolved strongly-interacting particles, I will show the latest results for the production of diphoton pairs at the LHC at NNLO . Besides restoring the predictivity of the perturbative QCD prediction at low qT, the resummation improves the agreement of the theoretical prediction with the experimental data. It is worth noting that the resummation formalism, which is by now very well-established, has several powerful features, such as universality (most of the coefficients needed to implement the calculation are process-independent) and flexibility, allowing for the prediction of more general distributions than just the qT spectrum. In fact, the structure of the resummation formula is closely related to, and helps elucidate, the general structure of IR singularities in QCD . This talk is part of the HEP phenomenology joint Cavendish-DAMTP seminar series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsDisaster Resilient Supply Chain Operations (DROPS) Workshop Series Disability Switch Off Week Food Futures in the World Machine Learning Reading Group @ CUED Considering Performance: A Symposium of American Culture and LiteratureOther talksFuture directions panel Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments Adaptation in log-concave density estimation Information Theory, Codes, and Compression Panel comparisons: Challenor, Ginsbourger, Nobile, Teckentrup and Beck |