University of Cambridge > Talks.cam > Statistics > High Dimensional Influence Measure

High Dimensional Influence Measure

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact .

Influence diagnosis is important since presence of influential observations could lead to distorted analysis and misleading interpretations. For high dimensional data, it is particularly so, as the increased dimensionality and complexity may amplify both the chance of an observation being influential, and its potential impact on the analysis. In this article, we propose a novel high dimensional influence measure for regressions with the number of predictors far exceeding the sample size. Our proposal can be viewed as a high dimensional counterpart to the classical Cook’s distance. However, whereas the Cook’s distance quantifies the individual observation’s influence on the least squares regression coefficient estimate, our new diagnosis measure captures the influence on the marginal correlations, which in turn exerts serious influence on downstream analysis including coefficient estimation, variable selection and screening. Moreover, we establish the asymptotic distribution of the proposed influence measure by letting the predictor dimension go to infinity. Availability of this asymptotic distribution leads to a principled rule to determine the critical value for influential observation detection. Both simulations and real data analysis demonstrate usefulness of the new influence diagnosis measure.

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity