University of Cambridge > > Statistics > Statistical Challenges in Genetic Analysis of Biobank Data

Statistical Challenges in Genetic Analysis of Biobank Data

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Qingyuan Zhao.

Note unusual time

The past two decades have seen great advances in human genetics with the identifications of hundreds of thousands of genomic regions associated with thousands of traits and diseases through Genome-Wide Association Studies (GWAS) that collect phenotype and genotype data from large cohorts and biobanks. For example, the UK Biobank has over 500,000 participants, and the Million Veteran Program in the US has recruited more than 900,000 veterans. There are rich phenotypes (e.g. thousands of clinical traits, lab test results, imaging data, and wearable device data) and omics data (e.g. genotype data, whole exome sequencing, whole genome sequencing, gene expression, epigenetics, proteomics, and metabolomics data) available from these cohorts. These data present great opportunities for identifying functional genes and variants for different traits and diseases, inferring specific tissues and cell types relevant for a trait, characterizing the genetic architecture of complex diseases, developing disease risk prediction models that capture joint effects of genetic and environmental factors, investigating genetic similarities and differences across groups (e.g. different ancestral populations), and studying causal relationships among diseases and traits. In this presentation, we will review the statistical methods that have been developed to address these challenges and the significant gaps remaining to analyze and interpret these rich data.

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity