COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Statistics > Linear regression with unmatched data: a deconvolution perspective
Linear regression with unmatched data: a deconvolution perspectiveAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Qingyuan Zhao. Consider the regression problem where the response Y∈ℝ and the covariate X∈ℝd for d≥1 are \textit{unmatched}. Under this scenario, we do not have access to pairs of observations from the distribution of (X,Y), but instead, we have separate datasets {Yi}ni=1 and {Xj}mj=1, possibly collected from different sources. We study this problem assuming that the regression function is linear and the noise distribution is known or can be estimated. We introduce an estimator of the regression vector based on deconvolution and demonstrate its consistency and asymptotic normality under an identifiability assumption. In the general case, we show that our estimator (DLSE: Deconvolution Least Squared Estimator) is consistent in terms of an extended ℓ2 norm. Using this observation, we devise a method for semi-supervised learning, i.e., when we have access to a small sample of matched pairs (Xk,Yk). Several applications with synthetic and real datasets are considered to illustrate the theory. https://arxiv.org/abs/2207.06320 This talk is part of the Statistics series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsMathworks The obesity epidemic: Discussing the global health crisis CEB Career TalksOther talksBioinformatic analysis of T-cell antigen receptors as a novel diagnostic test for coeliac disease/ gluten sensitivity Europe's cartographic 'Arcticulation' of the North: The use of maps in official European and national Arctic policies. Development and application of environmental flow software Humoral immunity in the lung; spatiotemporal regulation of resident memory B cell responses to infection with influenza virus Microlocal Analysis of Borehole Seismic Data |