University of Cambridge > Talks.cam > Statistics > Root and community inference on Markovian models of networks

Root and community inference on Markovian models of networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Qingyuan Zhao.

Preferential attachment (PA) is a popular way of modeling random networks in which the network starts as a single node which we call the root node, and at every new time step, a new node and new edges are added to the network; this dynamic captures the growth/recruitment process that underlies many real-world networks.

Given only a single snapshot of the final network G, we study the problem of constructing confidence sets for the early history, in particular the root node, of the unobserved growth process; the root node can be patient zero in a disease infection network or the source of fake news in a social media network.

We consider random network generated by adding noisy edges to a PA tree and derive an inference algorithm based on Gibbs sampling that scales to networks with millions of nodes. We provide theoretical analysis showing that the expected size of the confidence set is small so long as the noise level is not too large. We also propose variations of the model in which multiple growth processes occur simultaneously from multiple root nodes, reflecting the formation of multiple communities, and we use these models to provide a new approach to community detection.

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2022 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity