Default priors and model parametrization
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact rbg24.
This talk presents the development of classes of priors that
ensure calibration of the resulting posterior inferences. These
priors are built using asymptotic properties of likelihood inference
and location model approximations to general models. The role of
parameterization of the model in obtaining calibrated posterior
inference for sub-parameters is described, and the proposed priors are
related to Jeffreys’ prior and the Welch-Peers approach. Connections
are made to so-called strong matching priors, which are data dependent
priors derived by equating posterior marginal probabilities to
conditional $p$-values, and the importance of targetting the prior on
the parameter of interest.
This talk is part of the Statistics series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|