COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Statistics > Random Graph Asymptotics for Treatment Effect Estimation under Network Interference
Random Graph Asymptotics for Treatment Effect Estimation under Network InterferenceAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Qingyuan Zhao. The network interference model for causal inference places all experimental units at the vertices of an undirected exposure graph, such that treatment assigned to one unit may affect the outcome of another unit if and only if these two units are connected by an edge. This model has recently gained popularity as means of incorporating interference effects into the Neyman—Rubin potential outcomes framework; and several authors have considered estimation of various causal targets, including the direct and indirect effects of treatment. In this paper, we consider large-sample asymptotics for treatment effect estimation under network interference in a setting where the exposure graph is a random draw from a graphon. When targeting the direct effect, we show that—-in our setting—-popular estimators are considerably more accurate than existing results suggest, and provide a central limit theorem in terms of moments of the graphon. Meanwhile, when targeting the indirect effect, we leverage our generative assumptions to propose a consistent estimator in a setting where no other consistent estimators are currently available. We also show how our results can be used to conduct a practical assessment of the sensitivity of randomized study inference to potential interference effects. Overall, our results highlight the promise of random graph asymptotics in understanding the practicality and limits of causal inference under network interference. This is joint work with Stefan Wager. This talk is part of the Statistics series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsCambridge Infectious Diseases Pilot waves, Bohmian metaphysics, and the foundations of quantum mechanics Architectural Windows & Doors AustraliaOther talksLocating cryptocurrencies in the Western legal tradition Computational image analysis for coeliac disease diagnosis ONLINE WEBINAR - NVIDIA Powers the AI Revolution AnyOpt: Predicting and Optimizing IP Anycast Performance Human action selection under threat: computing adaptive behaviour |