COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Statistics > Functional Models for Time Varying Random Objects
Functional Models for Time Varying Random ObjectsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Dr Sergio Bacallado. In recent years, samples of time-varying object data such as time-varying networks that are not in a vector space have been increasingly collected. These data can be viewed as elements of a general metric space that lacks local or global linear structure and therefore common approaches that have been used with great success for the analysis of functional data, such as functional principal component analysis, cannot be applied directly. In this talk, I will propose some recent advances along this direction. First, I will discuss ways to obtain dominant modes of variations in time varying object data. I will describe metric covariance, a new association measure for paired object data lying in a metric space (Ω, d) that we use to define a metric auto-covariance function for a sample of random Ω-valued curves, where Ω will not have a vector space or manifold structure. The proposed metric auto-covariance function is non-negative definite when the squared metric d^2 is of negative type. The eigenfunctions of the linear operator with the metric auto-covariance function as the kernel can be used as building blocks for an object functional principal component analysis for Ω-valued functional data, including time-varying probability distributions, covariance matrices and time-dynamic networks. Then I will describe how to obtain analogues of functional principal components for time-varying objects by applying weighted Fréchet means which serve as projections of the random object trajectories in the directions of the eigenfunctions, leading to Ω-valued Fréchet integrals. This talk is based on joint work with Hans-Georg Müller. This talk is part of the Statistics series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsVon Hugel Institute's seminar programme: Renewing Catholic Social Thought: An Agenda for the 21st Century'. Wall Street meets Lincoln's Inn! Engineering - Mechanics Colloquia Research SeminarsOther talksDevelopment of a sensitivity toolbox for design in the presence of uncertainties: introduction and demonstration Flexibility premium of emissions permits From cell dynamics to robust tissue folding Challenges in Designing New Batteries and Supercapacitators for a Low Carbon Economy change of room: FW26 Probabilistic machine learning as an algorithmic interface to weather model and environmental data |