University of Cambridge > Talks.cam > Statistics > Measuring sample quality with diffusions

Measuring sample quality with diffusions

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Quentin Berthet.

Standard Markov chain Monte Carlo diagnostics, like effective sample size, are ineffective for biased sampling procedures that sacrifice asymptotic correctness for computational speed. Recent work addresses this issue for a class of strongly log-concave target distributions by constructing a computable discrepancy measure based on Stein’s method that provably determines convergence to the target. We generalize this approach to cover any target with a fast-coupling Ito diffusion by bounding the derivatives of Stein equation solutions in terms of Markov process coupling rates. As example applications, we develop computable and convergence-determining diffusion Stein discrepancies for log-concave, heavy-tailed, and multimodal targets and use these quality measures to select the hyperparameters of biased samplers, compare random and deterministic quadrature rules, and quantify bias-variance tradeoffs in approximate Markov chain Monte Carlo. Our explicit multivariate Stein factor bounds may be of independent interest. Preprint: https://arxiv.org/abs/1611.06972

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity