The Sarkisov program for Mori fibered lc Calabi--Yau pairs.
Add to your list(s)
Download to your calendar using vCal
- Anne-Sophie Kaloghiros (Brunel)
- Wednesday 11 February 2015, 14:15-15:15
- CMS MR13.
If you have a question about this talk, please contact Dr. J Ross.
A Mori fibered Calabi-Yau pair (X,D) is a pair of a normal variety X and a reduced divisor D such that K+D is a Cartier divisor linearly equivalent to 0, and such that X itself has a structure of Mori fibre space. Such a pair is the end product of two distinct Minimal Model Programs: on the one hand, it is a K+D-minimal model, and on the other it is the end product of a classical MMP .
In this talk, I will present a general Sarkisov-type factorisation theorem for birational maps between Mori fibered Calabi-Yau pairs, and I will discuss the singularities of 3-fold Calabi-Yau pairs.
This talk is part of the Algebraic Geometry Seminar series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|