COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

University of Cambridge > Talks.cam > Probability Theory and Statistics in High and Infinite Dimensions > The Hurst Phenomenon and the Rescaled Range Statistic

## The Hurst Phenomenon and the Rescaled Range StatisticAdd to your list(s) Download to your calendar using vCal - David M. Mason, University of Delaware
- Wednesday 25 June 2014, 09:30-10:00
- Centre for Mathematical Sciences, Meeting Room 2.
If you have a question about this talk, please contact clc32. In 1950 H. E. Hurst published the results of his investigations of water out ow from the great lakes of the Nile basin. Hurst wanted to determine the reservoir capacity that would be needed to develop the irrigation along the Nile to its fullest extent. His work motivated the notion of long range dependence through the application of a statistic that he developed for his study. This is the rescaled range statistic-the R=S statistic. Given data Xi, i = 1; : : : ; n, set n = 1 n Pn i=1 Xi; and let S i = Pi j=1 (Xj n), for i = 1; : : : ; j; M n = max (0; S 1 ; : : : ; Sn ) and m n = min (0; S 1 ; : : : ; Sn ) : Dene the adjusted range Rn = M n m n: The rescaled range statistic (the R=S statistic) is Rn = M n m n: where Dn is the sample standard deviation Dn = qPn i=1 (Xi n)2 =n, for n 1: Hurst argued via a small simulation study that if Xi, i = 1; : : : ; n, are i.i.d. normal then (R=S)n should grow in the order of p n. (Hurst was later proved correct by Feller.) However, Hurst found that for the Nile River data, (R=S)n increased not in the order of p n; but in the order nH, where H ranged between :68 and :80 with a mean of :75. For annual tree ring data H ranged between :79 and :86 with a mean of :80, for sunspots and wheat prices an average H of :69 was obtained, and data on the thickness of annual layers of lake mud deposits gave an average of H = :69. All of the above data had normal-like histograms, yet all gave estimates of H consistently greater than 1=2, which an i.i.d. normal model would give. This is now called the Hurst phenomenon. We shall discuss some unexpected universal asymptotic properties of the R=S statistic, which show conclusively that the Hurst phenomenon can never appear for i.i.d. data. This talk is part of the Probability Theory and Statistics in High and Infinite Dimensions series. ## This talk is included in these lists:- All CMS events
- All Talks (aka the CURE list)
- CMS Events
- Centre for Mathematical Sciences, Meeting Room 2
- DPMMS Lists
- DPMMS info aggregator
- DPMMS lists
- Hanchen DaDaDash
- Interested Talks
- School of Physical Sciences
- Statistical Laboratory info aggregator
- bld31
Note that ex-directory lists are not shown. |
## Other listsEducation Reform and Innovation - ERI Cambridge Public Policy Workshops TCM Journal Club## Other talksSystems for Big Data Applications: Revolutionising personal computing Statistical Learning Theory Phenotypic changes induced by stress and developmental reprogramming in plants Plant host-pathogen coevolution and exploring local adaptation of an Arabidopsis thaliana complex Resistance gene locus TODAY Adrian Seminar: "Starting new actions and learning from it" Action Stations! |