Inversion and perversion in biomechanics: from microscopic anisotropy to macroscopic chirality
Add to your list(s)
Download to your calendar using vCal
If you have a question about this talk, please contact Ms Helen Gardner.
Please note this is a Mechanics Colloquia and will start at 2.30pm and is held in LR4
One of the fundamental problems of bio-mechanics is to understand the relationship between a microscopic structure and its overall macroscopic responses. A paradigm for this problem is chirality. How does a right-handed structure behaves under loads? A simple example motivated by the study of DNA is the extension of a right-handed spring under pure axial load. Would it rotate clockwise or counter-clockwise? Similarly, many plant structures are fibre-reinforced and the problem is to connect the chirality of the fibre with the chirality of the rotation induced by change in pressure. Motivated by different biological experiments on active gels, DNA , plant cell walls, and fungi, I will show that biological systems, through a combination of internal stresses and nonlinear response offer many puzzling and often counter-intuitive chiral behaviour leading to the interesting possibility of perversion, an inversion in chirality. These behaviours also illustrate non-monotonic behaviour in loading a response that can only be found in nonlinear mechanical systems.
This talk is part of the Engineering - Mechanics and Materials Seminar Series series.
This talk is included in these lists:
Note that ex-directory lists are not shown.
|