University of Cambridge > Talks.cam > Statistics > When Bayesians Can't Handle the Truth

When Bayesians Can't Handle the Truth

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Richard Samworth.

There are elegant results on the consistency of Bayesian updating for well-specified models facing IID or Markovian data, but both completely correct models and fully observed states are vanishingly rare. In this talk, I give conditions for posterior convergence that hold when the prior excludes the truth, which may have complex dependencies. The key dynamical assumption is the convergence of time-averaged log likelihoods (Shannon-McMillan-Breiman property). The main statistical assumption is a building into the prior a form of capacity control related to the method of sieves. With these, I derive posterior and predictive convergence, and a large deviations principle for the posterior, even in infinite-dimensional hypothesis spaces; and clarify role of the prior and of model averaging as regularization devices.

Paper: http://projecteuclid.org/euclid.ejs/1256822130

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity