University of Cambridge > Talks.cam > Discrete Analysis Seminar > The width of a group

The width of a group

Add to your list(s) Download to your calendar using vCal

  • UserNick Gill (Open University)
  • ClockWednesday 28 November 2012, 14:30-15:00
  • HouseMR11, CMS.

If you have a question about this talk, please contact Ben Green.

I describe recent work with Pyber, Short and Szabo in which we study the `width’ of a finite simple group. Given a group G and a subset A of G, the `width of G with respect to A’ – w(G,A) – is the smallest number k such that G can be written as the product of k conjugates of A. If G is finite and simple, and A is a set of size at least 2, then w(G,A) is well-defined; what is more Liebeck, Nikolov and Shalev have conjectured that in this situation there exists an absolute constant c such that w(G,A)\leq c log|G|/log|A|.

I will present a partial proof of this conjecture as well as describing some interesting, and unexpected, connections between this work and classical additive combinatorics. In particular the notion of a normal K-approximate group will be introduced.

This talk is part of the Discrete Analysis Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity