University of Cambridge > Talks.cam > Discrete Analysis Seminar > On the dynamical Mordell-Lang conjecture

On the dynamical Mordell-Lang conjecture

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Bob Hough.

Let $V$ be a variety, and let $\phi : V \to V$ be a morphism. If an (infinite) forward orbit of a point intersects a subvariaty $W$ infinitely many times, what can be said about $W$? The dynamical Mordell-Lang conjecture asserts that this can only happen for “the obvious reason”, namely that $W$ is $\phi$-preperiodic. We will give a brief background on the conjecture, and using a $p$-adic analytic approach, prove it for certain coordinatewise actions. Assuming certain “random map assumptions”, the approach should work for more general maps if the mod $p$ periodic part of orbit avoids the ramification locus of $\phi$. However, in sufficiently high dimensions the approach breaks down due to the periods being too long. We will discuss this in more detail, and present numerical evidence for the validity of the random map assumption in various dimensions.

This talk is part of the Discrete Analysis Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity