University of Cambridge > > Statistics > Modelling Network Data

Modelling Network Data

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Richard Samworth.

Networks are fast becoming a primary object of interest in statistical data analysis, with important applications spanning the social, biological, and information sciences. A common aim across these fields is to test for and explain the presence of structure in network data. In this talk we show how characterizing the structural features of a network corresponds to estimating the parameters of various random network models, allowing us to obtain new results for likelihood-based inference and uncertainty quantification in this context. We discuss asymptotics for stochastic blockmodels with growing numbers of classes, the determination of confidence sets for network structure, and a more general point process modeling for network data taking the form of repeated interactions between senders and receivers, where we show consistency and asymptotic normality of partial-likelihood-based estimators related to the Cox proportional hazards model (arXiv:1201.5871, 1105.6245, 1011.4644, 1011.1703).

This talk is part of the Statistics series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity