University of Cambridge > > Isaac Newton Institute Seminar Series > Representations of surface groups and Higgs bundles - II

Representations of surface groups and Higgs bundles - II

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Moduli Spaces

A Higgs bundle on a Riemann surface is a pair consisting of a holomorphic bundle and a holomorphic one-form, the Higgs field, with values in a certain associated vector bundle. A theorem of Hitchin and Simpson says that a stable Higgs bundle admits a metric satisfying Hitchin’s equations. Together with the Theorem of Corlette and Donaldson, the Hitchin-Kobayashi correspondence generalizes the classical Hodge decomposition of the first cohomology of the Riemann surface, providing a correspondence between isomorphism classes of Higgs bundles and representations of the fundamental group of the surface.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity