University of Cambridge > > Isaac Newton Institute Seminar Series > Asymptotic spreading in general heterogeneous media

Asymptotic spreading in general heterogeneous media

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Partial Differential Equations in Kinetic Theories

We will present in this talk propagation properties for the solutions of the heterogeneous Fisher-KPP equation @tuÀ@xxu=Ö(t;x)u(1Àu) where Ö is only assumed to be uniformly continuous and bounded in (t;x) , for initial data with compact support. Using homogenization techniques, we construct two speeds w and w such that limt!+1u(t;x+wt)=0 if w>w and limt!+1u(t;x+wt)=1 if Unknown control sequence ’\inderline’. These speeds are characterized in terms of two new notions of generalized principal eigenvalues for linear parabolic operators in unbounded domains. In particular, this allows us to derive the exact asymptotic speed of propagation for almost periodic and asymptotically almost periodic equations (where w=w ) and to obtain explicit bounds on these speeds in recurrent and spatially homogeneous equations.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity