University of Cambridge > > Information Theory Seminar > Fundamental limits in structured PCA, and how to reach them

Fundamental limits in structured PCA, and how to reach them

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Prof. Ramji Venkataramanan.

Note: different room from the usual

I will discuss the paradigmatic spiked matrix model of principal components analysis, where a rank-one signal is corrupted by additive noise. While the noise is typically taken from a Wigner matrix with independent entries, here the potential acting on the eigenvalues has a quadratic plus a quartic component. The quartic term induces strong correlations between the matrix elements, which makes the setting relevant for applications but analytically challenging. Our work provides the first characterization of the Bayes-optimal limits for inference in this model with structured noise. If the signal prior is rotational-invariant, then we show that a spectral estimator is optimal. In contrast, for more general priors, the existing approximate message passing algorithm (AMP) falls short of achieving the information-theoretic limits, and we provide a justification for this sub-optimality. Finally, by generalizing the theory of Thouless-Anderson-Palmer equations, we cure the issue by proposing a novel AMP which matches the theoretical limits. Our information-theoretic analysis is based on the replica method, a powerful heuristic from statistical mechanics; instead, the novel AMP comes with a rigorous state evolution analysis tracking its performance in the high-dimensional limit.

This talk is part of the Information Theory Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity