University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Quantum geometry of 3-dimensional lattices

Quantum geometry of 3-dimensional lattices

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

Discrete Integrable Systems

We study geometric consistency relations between angles on 3-dimensional (3D) circular quadrilateral lattices—lattices whose faces are planar quadrilaterals inscribable into a circle. We show that these relations generate canonical transformations of a remarkable ``ultra-local’’ Poisson bracket algebra defined on discrete 2D surfaces consisting of circular quadrilaterals. Quantization of this structure leads to new solutions of the tetrahedron equation (the 3D analog of the Yang-Baxter equation). These solutions generate an infinite number of non-trivial solutions of the Yang-Baxter equation and also define integrable 3D models of statistical mechanics and quantum field theory. The latter can be thought of as describing quantum fluctuations of lattice geometry. The classical geometry of the 3D circular lattices arises as a stationary configuration giving the leading contribution to the partition function in the quasi-classical limit.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity