COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Probability > Local geometry of the rough-smooth interface in the two-periodic Aztec diamond.
Local geometry of the rough-smooth interface in the two-periodic Aztec diamond.Add to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Perla Sousi. Random tilings of the two-periodic Aztec diamond contain three macroscopic regions: frozen, where the tilings are deterministic; rough, where the correlations between dominoes decay polynomially; smooth, where the correlations between dominoes decay exponentially. In a previous paper, we found that a certain averaging of the height function at the rough smooth interface converged to the extended Airy kernel point process. In this paper, we augment the local geometrical picture at this interface by introducing well-defined lattice paths which are closely related to the level lines of the height function. We show after suitable centering and rescaling that a point process from these paths converge to the extended Airy kernel point process provided that the natural parameter associated to the two-periodic Aztec diamond is small enough. This is joint work with Kurt Johansson and Vincent Beffara. This talk is part of the Probability series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsWomen's Word Type the title of a new list here Conspiracy and Democracy ProjectOther talksTrying to decipher normality by looking at the extremes Talk 1 of 2: Speleothem records of abrupt warming events during the last glacial period Seeing the Milky Way Disk Evolve A phenomenological constitutive theory for polycrystalline ferroelectric ceramics based on orientation distribution functions Conformal geodesics, gravitational instantons, and integrability. |