University of Cambridge > > Computational Neuroscience > Computational Neuroscience Journal Club

Computational Neuroscience Journal Club

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Rodrigo Echeveste.

Ta-Chu (Calvin) Kao will be presenting:

• Inferring single-trial neural population dynamics using sequential auto-encoders

• Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D. Stavisky, Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg, Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott & David Sussillo

• Nature Methods 2018

Abstract: Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.

This talk is part of the Computational Neuroscience series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2019, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity