University of Cambridge > Talks.cam > DAMTP BioLunch >  Model-based image analysis of a tethered Brownian fibre for shear stress sensing

Model-based image analysis of a tethered Brownian fibre for shear stress sensing

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Anne Herrmann.

The measurement of fluid dynamic shear stress acting on a biologically relevant surface is a challenging problem, particularly in the complex environment of the vasculature. While an experimental method for the direct detection of wall shear stress via the imaging of a synthetic biology nanorod has recently been developed, the data interpretation so far has been limited to phenomenological random walk modelling, small angle approximation, and image analysis techniques which do not take into account the production of an image from a three-dimensional subject. In this talk I will present a mathematical and statistical framework to estimate shear stress from rapid imaging sequences based firstly on stochastic modelling of the dynamics of a tethered Brownian fibre in shear flow, and secondly on a novel model-based image analysis, which reconstructs fibre positions by solving the inverse problem of image formation. I will present the testing of this framework on experimental data, providing the first mechanistically rational analysis of the novel assay. This work further develops the established theory for an untethered particle in a semi-dilute suspension, which is of relevance to, for example, the study of Brownian nanowires without flow, and presents new ideas in the field of multidisciplinary image analysis.

This talk is part of the DAMTP BioLunch series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2020 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity