University of Cambridge > > Probability > Criticality in random transposition random walk

Criticality in random transposition random walk

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Perla Sousi.

The random walk on the permutations of [N] generated by the transpositions was shown by Diaconis and Shahshahani to mix with sharp cutoff around N log N /2 steps. However, Schramm showed that the distribution of the sizes of the largest cycles concentrates (after rescaling) on the Poisson-Dirichlet distribution PD(0,1) considerably earlier, after (1+\epsilon)N/2 steps. We show that this behaviour in fact emerges precisely during the critical window of (1+\lambda N^{-1/3}) N/2 steps, as \lambda \rightarrow\infty. Our methods are rather different, and involve an analogy with the classical Erdos-Renyi random graph process, the metric scaling limits of a uniformly-chosen connected graph with a fixed finite number of surplus edges, and analysing the directed cycle structure of large 3-regular graphs. Joint work with Christina Goldschmidt.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity