University of Cambridge > Talks.cam > Probability > Delocalising the parabolic Anderson model

Delocalising the parabolic Anderson model

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Perla Sousi.

The parabolic Anderson problem is the Cauchy problem for the heat equation on the integer lattice with random potential. It is well-known that, unlike the standard heat equation, the solution of the parabolic Anderson model exhibits strong localisation. In particular, for a wide class of iid potentials it is localised at just one point. In the talk, we discuss a natural modification of the parabolic Anderson model on Z, where the one-point localisation breaks down for heavy-tailed potentials and remains unchanged for light-tailed potentials, exhibiting a range of phase transitions. This is a joint work with Stephen Muirhead and Richard Pymar.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity