University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > The spread of infections on evolving scale-free networks

The spread of infections on evolving scale-free networks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

SNAW04 - Dynamic Networks

We study the contact process on a class of evolving scale-free networks, where each node updates its connections at independent random times. We give a rigorous mathematical proof that there is a transition between a phase where for all infection rates the infection survives for a long time, at least exponential in the network size, and a phase where for sufficiently small infection rates extinction occurs quickly, at most polynomially in the network size. The phase transition occurs when the power-law exponent crosses the value four. This behaviour is in contrast to that of the contact process on the corresponding static model, where there is no phase transition, as well as that of a classical mean-field approximation, which has a phase transition at power-law exponent three. The new observation behind our result is that temporal variability of networks can simultaneously increase the rate at which the infection spreads in the network, and decrease the time which the infection spends in metastable states.

This is joint work with Emmanuel Jacob (ENS Lyon).

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2017 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity