University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Co-clustering of non-smooth graphons

Co-clustering of non-smooth graphons

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

SNAW01 - Graph limits and statistics

Theoretical results are becoming known for community detection and clustering of networks; however, these results assume an idealized generative model that is unlikely to hold in many settings. Here we consider exploratory co-clustering of a bipartite network, where the rows and columns of the adjacency matrix are assumed to be samples from an arbitrary population. This is equivalent to assuming that the data is generated from a nonparametric model known as a graphon. We show that co-clusters found by any method can be extended to the row and column populations, or equivalently that the estimated blockmodel approximates a blocked version of the generative graphon, with generalization error bounded by n^{-1/2}. Analogous results are also shown for degree-corrected co-blockmodels and random dot product bipartite graphs, with error rates depending on the dimensionality of the latent variable space.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity