COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |

## The Geometry of Minimal SurfacesAdd to your list(s) Download to your calendar using vCal - Professor Blaine Lawson, Stony Brook University, USA
- Friday 21 May 2010, 12:00-13:00
- Cockcroft Lecture Theatre, New Museums Site.
If you have a question about this talk, please contact nobody. A minimal surface in euclidean space is a surface which is locally of least area (that is, any perturbation on a small region will increase the area). These surfaces have captured the imagination of geometers and analysts from Riemann and Weierstrauss to the present day, where they have evolved to become an important tool in modern geometric analysis. This lecture will give an introduction to the basic geometry of minimal surfaces in R In the second part of the lecture I will discuss minimal surfaces in a more general context. Examples will include compact minimal surfaces of arbitrary genus in the euclidean 3-sphere S This talk is part of the Rouse Ball Lectures series. ## This talk is included in these lists:- All CMS events
- All Talks (aka the CURE list)
- CMS Events
- Cockcroft Lecture Theatre, New Museums Site
- DPMMS info aggregator
- Faculty of Mathematics Lectures
- Rouse Ball Lectures
- SJC Regular Seminars
- School of Physical Sciences
Note that ex-directory lists are not shown. |
## Other listsMathworks Type the title of a new list here Junior Category Theory Seminar## Other talksSeminar – Effects of Macronutrient Distribution on Weight Change and Related Cardiometabolic Profiles in Healthy Non-Obese Chinese: A Randomized, Clinical Trial A Positive Psychological Approach to weight loss. Capitalism on the Edge - What can women do to change how Capitalism works? Production Processes Group Seminar - Photonic sorting of aligned crystalline carbon nanotube textiles. The persistence of large-scale compositional heterogeneity in the Earth’s mantle Group Discussions (Isaac Newton Institute & Centre for Mathematical Sciences) |