University of Cambridge > Talks.cam > Applied and Computational Analysis > Transient dynamics under structured perturbations: bridging unstructured and structured pseudospectra

Transient dynamics under structured perturbations: bridging unstructured and structured pseudospectra

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Matthew Colbrook.

As is known, bounds of the resolvent of a matrix in the right complex half-plane yield bounds of solutions of homogeneous and inhomogeneous linear differential equations with this matrix. We ask two basic questions:

- Up to which size of structured perturbations are the resolvent norms of the perturbed matrices within a given bound in the right complex half-plane?

- For a given size of structured perturbations, what is the smallest common bound for the resolvent norms of the perturbed matrices in the right complex half-plane?

This is considered for general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz or Hankel matrices. Conceptually, we combine unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. The above questions are addressed by an algorithm which solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations. The talk is based on joint work with Nicola Guglielmi.

This talk is part of the Applied and Computational Analysis series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity