University of Cambridge > Talks.cam > Applied and Computational Analysis > Feature Learning in Two-layer Neural Networks: The Effect of Data Covariance

Feature Learning in Two-layer Neural Networks: The Effect of Data Covariance

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Nicolas Boulle.

We study the effect of gradient-based optimization on feature learning in two-layer neural networks. We consider a setting where the number of samples is of the same order as the input dimension and show that, when the input data is isotropic, gradient descent always improves upon the initial random features model in terms of prediction risk, for a certain class of targets. Further leveraging the practical observation that data often contains additional structure, i.e., the input covariance has non-trivial alignment with the target, we prove that the class of learnable targets can be significantly extended, demonstrating a clear separation between kernel methods and two-layer neural networks in this regime.

This talk is part of the Applied and Computational Analysis series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity