University of Cambridge > Talks.cam > Formalisation of mathematics with interactive theorem provers  > Condensed Type Theory

Condensed Type Theory

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Jonas Bayer.

Condensed sets form a topos, and hence admit an internal type theory. In this talk I will describe a list of axioms satisfied by this particular type theory. In particular, we will see two predicates on types, that single out a class CHaus of “compact Hausdorff” types and a class ODisc of “overt and discrete” types, respectively. A handful of axioms describe how these classes interact. The resulting type theory is spiritually related Taylor’s “Abstract Stone Duality”.

As an application I will explain that ODisc is naturally a category, and furthermore, every function ODisc → ODisc is automatically functorial. This axiomatic approach to condensed sets, including the functoriality result, are formalized in Lean 4. If time permits, I will comment on some of the techniques that go into the proof.

Joint work with Reid Barton.

—-

WATCH ONLINE HERE : https://www.microsoft.com/en-gb/microsoft-teams/join-a-meeting?rtc=1 Meeting ID: 370 771 279 261 Passcode: iCo7a5

This talk is part of the Formalisation of mathematics with interactive theorem provers series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity