COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Applied and Computational Analysis > Hamiltonian simulation and optimal control
Hamiltonian simulation and optimal controlAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Nicolas Boulle. Hamiltonian simulation on quantum computers is one of the primary candidates for demonstration of quantum advantage. A central tool in Hamiltonian simulation is the matrix exponential. While uniform polynomial approximations (Chebyshev), best polynomial approximations, and unitary but asymptotic rational approximations (Padé) are well known and are extensively used in computational quantum mechanics, there was an important gap which has now been filled by the development of the theory and algorithms for unitary rational best approximations. This class of approximants leads to geometric numerical integrators with excellent approximation properties. In the second part of the talk I will talk about time-dependent Hamiltonians for many-body two-level systems, including a quantum algorithm for their simulation and some (classical) optimal control algorithms for quantum gate design. This talk is part of the Applied and Computational Analysis series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsJunior Category Theory Seminar ‘Geographies of Radical Difference’ Reproduction on Film 3: Making BabiesOther talksFace Learning in People with Developmental Prosopagnosia and “Super-Recognisers" CUED Bioengineering Conference Stacks and moduli spaces (Lecture 2) The incompressible Toner-Tu equations and their correspondence with the multifractal model and the Navier-Stokes equations Cafe Synthetique 'iGem and SynBio Society' A Comprehensive Study of the Extremist Narratives and the Role of Alternative Social Networks that Facilitate Radical Discourse |