University of Cambridge > Talks.cam > Probability > Gaussian multiplicative chaos measures, Painlevé equations, and conformal blocks

Gaussian multiplicative chaos measures, Painlevé equations, and conformal blocks

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Perla Sousi.

Conformal blocks appear in several areas of mathematical physics from random geometry to black hole physics. A probabilistic notion of conformal blocks using gaussian multiplicative chaos measures was recently formulated by Promit Ghosal, Guillaume Remy, Xin Sun, Yi Sun (arxiv:2003.03802). In this talk, I will show that the semiclassical limit of the probabilistic conformal blocks recovers a special case of the elliptic form of Painlevé VI equation, thereby proving a conjecture by Zamolodchikov. This talk is based on an upcoming paper with Promit Ghosal and Andrei Prokhorov.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity