University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > On enstrophy dissipation in 2D turbulence

On enstrophy dissipation in 2D turbulence

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Mustapha Amrani.

The Nature of High Reynolds Number Turbulence

We consider dissipation of enstrophy, one half the integral of squared vorticity, in 2D incompressible, turbulent flows at very high Reynolds number. We prove rigorously that, if fully developed turbulence is to be modeled mathematically by irregular (weak) solutions of the 2D Euler equations in the limit of vanishing viscosity, then there is no dissipation as long as the initial enstrophy is finite. We also provide examples of dissipative flows when the initial enstrophy is infinite. Our analysis is inspired by work of G. Eyink. This is joint work with Helena and Milton Lopes.

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2019 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity