University of Cambridge > Talks.cam > Probability > Random walk on the simple symmetric exclusion process

Random walk on the simple symmetric exclusion process

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Perla Sousi.

In a joint work with Marcelo R. Hilário and Augusto Teixeira, we in- vestigate the long-term behavior of a random walker evolving on top of the simple symmetric exclusion process (SSEP) at equilibrium. At each jump, the random walker is subject to a drift that depends on whether it is sitting on top of a particle or a hole. The asymptotic behavior is expected to depend on the density ρ in [0, 1] of the underlying SSEP . Our first result is a law of large numbers (LLN) for the random walker for all densities ρ except for at most two values ρ− and ρ+ in [0, 1], where the speed (as a function fo the density) possibly jumps from, or to, 0. Second, we prove that, for any density corresponding to a non-zero speed regime, the fluctuations are diffusive and a Central Limit Theorem holds. Our main results extend to environments given by a family of independent simple symmetric random walks in equilibrium.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity