University of Cambridge > > Probability > Mixing times of exclusion processes on regular graphs

Mixing times of exclusion processes on regular graphs

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Perla Sousi.

Place k black particles and n-k white particles on the vertices of an n vertex graph, with one per vertex. Suppose each edge rings at rate 1 independently, and when an edge rings particles at the end-points switch positions. Oliveira conjectured that this “k-particle exclusion process” has mixing time of order at most that of k independent particles. Together with Jonathan Hermon we prove a bound for regular graphs which is in general within a log log n factor from this conjecture when k>n^c and which, in certain cases, verifies the conjecture. As a result we obtain new mixing time bounds for the exclusion process on expanders and the hypercube.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2024, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity