University of Cambridge > Talks.cam > NLIP Seminar Series > Deep reinforcement learning for dialogue policy optimisation

Deep reinforcement learning for dialogue policy optimisation

Add to your list(s) Download to your calendar using vCal

  • UserDr Milica Gasic, Dept. Engineering, University of Cambridge World_link
  • ClockFriday 16 February 2018, 12:00-13:00
  • HouseFW26, Computer Laboratory.

If you have a question about this talk, please contact Andrew Caines.

In spoken dialogue systems, we aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans. As part of this effort, we need to find ways to optimise the dialogue policy, i.e. we need to optimise a function that takes the current state of the dialogue as input and returns the response of the system. This is normally done via reinforcement learning. Deep reinforcement learning approaches have produced state-of-the-art results on games. In this talk I will discuss the necessary steps needed to deploy deep reinforcement learning for dialogue policy optimisation. I will also discuss the necessity for common benchmarks and the efforts in the Dialogue Systems Group to provide these.

This talk is part of the NLIP Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity