University of Cambridge > > CUED Control Group Seminars > Neuromechanical models of locomotion: from biology to robotics

Neuromechanical models of locomotion: from biology to robotics

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Alberto Padoan.

The ability to efficiently move in complex environments is a fundamental property both for animals and for robots, and the problem of locomotion and movement control is an area in which neuroscience and robotics can fruitfully interact. Animal locomotion control is in a large part based on spinal cord circuits that combine reflex loops and central pattern generators (CPGs), i.e. neural networks capable of producing complex rhythmic or discrete patterns while being activated and modulated by relatively simple control signals. These networks are located in the spinal cord for vertebrate animals and interact with the musculoskeletal system to provide “motor primitives” for higher parts of the brain, i.e. building blocks of motor control that can be activated and combined to generate rich movements. In this talk, I will present how we model the spinal cord circuits of lower vertebrates (lamprey and salamander) using systems of coupled oscillators, and how we test these models on board of amphibious robots. The models and robots were instrumental in testing some novel hypotheses concerning the mechanisms of gait transition, sensory feedback integration, and generation of rich motor skills in vertebrate animals. I will also discuss how the models can be extended to control biped locomotion and lower-limb exoskeletons.

This talk is part of the CUED Control Group Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity