University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > End-to-end learning of CNN features in in discrete optimization models for motion and stereo

End-to-end learning of CNN features in in discrete optimization models for motion and stereo

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact INI IT.

VMVW01 - Variational methods, new optimisation techniques and new fast numerical algorithms

Co-authors: Patrick Knöbelreiter (Graz University of Technology), Alexander Shekhovtsov (Technical University of Prague), Gottfried Munda (Graz University of Technology), Christian Reinbacher (Amazon)

For many years, discrete optimization models such as conditional random fields (CRFs) have defined the state-of-the-art for classical correspondence problems such as motion and stereo. One of the most important ingredients in those models is the choice of the feature transform that is used to compute the similarity between images patches. For a long time, hand crafted features such as the celebrated scale invariant feature transform (SIFT) defined the state-of-the-art. Triggered by the recent success of convolutional neural networks (CNNs), it is quite natural to learn such a feature transform from data. In this talk, I will show how to efficiently learn such CNN features from data using an end-to-end learning approach. It turns out that our learned models yields state-of-the-art results on a number of established benchmark databases.

Related Links

This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2024 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity