University of Cambridge > > Cambridge Analysts' Knowledge Exchange > Dvoretzky's theorem: some applications and some ideas

Dvoretzky's theorem: some applications and some ideas

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Josephine Evans.

Dvoretzky’s theorem was a major landmark in the local theory of Banach spaces. Very roughly it says that every infinite-dimensional Banach space contains slices that look like finite dimensional Hilbert space.

Although the proof is involved, we will look at some simple cases and deduce the theorem here. We will also give some results as to why such a theorem is of interest. No familiarity with Banach space theory will be assumed, and the talk will be aimed at people with a basic knowledge of functional analysis.

This talk is part of the Cambridge Analysts' Knowledge Exchange series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


© 2006-2023, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity